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Numerical Simulation of Pile-Up Distorted Time- 
Correlated Single Photon Counting (TCSPC) Data 
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A model, which is based on the binominal distribution, is derived for understanding and investi- 
gating the effect of statistical pulse pile-up. The model is applied to constant and exponential 
decaying sources and is compared with some experimental results. 
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INTRODUCTION 

The TCSPC method is based on the principle that 
the deactivation probability of an excited molecule via 
fluorescence at a time ti after delta pulse excitation is 
proportional to the fluorescence intensity at that time. 
When using a time-to-amplitude converter and a multi- 
channel analyzer (MCA) for detection, the true proba- 
bility distribution of the decay is obtained, if the recorded 
photon is always the only one reaching the photocathode 
until the next excitation cycle. In any multiphoton event, 
only the time information of the first arriving photon is 
recorded and stored in the MCA, which leads to a sta- 
tistical distortion of the decay histogram. This so-called 
pulse pile-up effect or type-S pile-up [1] is due to the 
nature of the method and can be reduced by limiting the 
start/stop ratio to 1-2% but cannot be eliminated totally. 
This has, however, the disadvantage of long data col- 
lection times, which can cause the problem of introduc- 
ing systematic errors [2,3]. 

The precision of kinetic parameters, which are ex- 
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tracted from the raw data, critically depends on the ex- 
perimental conditions. Of course it is always desirable 
to obtain a high time resolution and a high number of 
counts in the peak channel [4,5]. In contrast, the abso- 
lute time of data collection should be minimized, be- 
cause a possible long time drift of the excitation pulse 
profile could affect the quality of the data, and in reality 
there will always be a compromise between statistic pre- 
cision and measuring time. The optimization of decay 
experiments is especially important if flashlamps with 
relatively low repetition rates are used and presumes a 
detailed understanding about the nature of statistical pulse 
pile-up and the influence on decay curves, which are 
discussed in the following. Other effects such as detector 
dead times (type E pile-up) [1] or cross-channel pile-up 
due to statistical multiplexing [6,7] are of minor impor- 
tance for standard TCSPC experiments and are not con- 
cerned here. 

Various methods for the correction of pulse pile-up 
are known in the literature [8,9]. Coates [10] as well as 
Davis and King [11] used an equation to correct the raw 
data. Analytical functions, which are derived from Pois- 
son statistics, are also known for constant, single- and 
double-exponential functions and can be used to fit the 
distorted data directly [1,12,13]. These functions have, 
however, the disadvantage of being time-consuming in 
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deconvolution procedures. Electronic methods for pile- 
up discrimination have also been discussed [1,14,15]. 

The statistical nature of TCSPC data is well defined 
and therefore it is easy to simulate a desired decay. Such 
simulation studies are now widely used for testing the 
possibilities and limitations of decay curve analysis ap- 
proaches [16-19]. Hence, a simple model for the sim- 
ulation of pile-up distorted decay curves is derived and 
applied to constant, single- and double-exponential 
sources. For the case of a convoluted single-exponential 
decay, the simulation results are compared with exper- 
iments using 9-aminoacridine as fluorophore. 

is not negligibly short compared to the fluorescence 
function, realistic decay profiles were obtained from a 
convolution of F(t) with a synthetic excitation pulse. 
Here, Eq. (2) was used, giving a pulse shape typical for 
a hydrogen-filled flashlamp (see Fig. 2). 

L(t) = oqt2exp( -[31(t + bl)) 
+ a2[exp(-[32(t + b2) ) - -  exp(-~3(t  + b2))] 

(2) 

Since Poisson statistics is generally assumed for TCSPC 
data, noise was added according to the algorithm of Box-- 
Muller-Marsaglia [21]. 

MATERIALS AND METHODS 

9-Aminoacridine (gAC) (Sigma Chemical Co.) was 
used as received. The solvent ethanol (Merck) was of 
spectroscopic grade, purified by distillation, and dried 
subsequently to remove traces of water. For deoxygen- 
ation, the samples were bubbled for 10 min with high- 
purity nitrogen and then sealed in 1 x 1-cm cuvettes. 
The excitation wavelength for all measurements was X~,, 
= 381 nm. Fluorescence emission was detected at ~ e m  

-- 470 nm. The optical density of the fluorophore at the 
excitation wavelength was about 0.3. 

Fluorescence decay functions were measured em- 
ploying the technique of time-correlated single-photon 
counting as described elsewhere [20]. To take into ac- 
count a possible long time drift in the excitation pulse 
profile, lamp and fluorescence data were collected al- 
ternately. All measurements were carried out at 293 +_ 
1 K. The counts were collected into a 512-channel seg- 
ment of the multichannel analyzer with a time resolution 
of 3.4 Ch/ns. The total number of counts in the peak 
channel (CPC) was about 5-103. 

The simulations were carried out on an IBM-com- 
patible personal computer with a 33-MHz 80386 CPU 
and 80387 coprocessor. The programs are written in GFA, 
Basic 3.0 (compiler version). The random number gen- 
erator used was also taken from GFA-Basic 3.0. The 
randomness was verified by performing different statis- 
tical tests (e.g., X 2, runs up/down, serial) [21,22] and 
the generator was found to be satisfactory for all required 
applications. 

The model functions F(t) were of an exponential 
form with n = 1,2. 

F ( t ) =  i=1~ Ai exp ( - _ t )  (1) 

Due to the fact that the instrument response function L(t) 

SIMULATION OF STATISTICAL PULSE PILE- 
UP 

The pile-up model to be derived here is based on 
the binomial distribution and calculates the probability 
function of pile-up distorted data from an arbitrary decay 
curve using three assumptions. 

(i) A number of n photons is emitted in constant 
time intervals At after an arbitrary excitation 
pulse. All photons can be distinguished con- 
cerning the time of emission (N1 is the first, 
N~ is the last). 

(ii) The photons can move only in discrete paths. 
The number of those paths is given by the pa- 
rameter b. 

(iii) From all paths b, only a single one is detected. 
If more than one photon moves in that detec- 
tion path, only the first one is recorded. 

The analogy of items i-iii to the monophoton experiment 
is as follows: the photocathode area represents a spher- 
ical segment around the excited sample. Only a photon 
which is emitted toward the spacial direction of the pho- 
tocathode has a chance of being recorded. It is now easy 
to imagine that a sphere around the sample is covered 
with photocathodes (=  paths b), but only one of them 
detects the photons. Moreover, every emitted photon Ni 
represents a defined time ti, which is analogeous to a 
specific channel in the MCA, and thus the counts in path 
i are incremented if the event N/occurs. 

For a source with a constant pulse rate, all photons 
are emitted with equal probability after delta pulse ex- 
citation. Then q is the probability for a single photon of 
being emitted via the detection path and is given by q 
= 1/b. The probability p(k) to find a number of k pho- 
tons in the detection path is defined by the binominal 
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distribution. 

p ( k ) =  ( ~ ) q ~ ( 1 -  q)"-~ (3) 

For the case that n > q (as common for monophoton 
experiments), Eq. (3) can be approximated by the Pois- 
son distribution. 

(nq) k 
p(k) = k---~, exp(-nq) (4) 

The chance of emitting no photon in the detection path 
isp(0) = (1 - q)n and the start/stop ratio can be defined 
by 1 - p(0). For a constant source the intensity profile 
must be a parallel to the time axis. However, if multi- 
photon events occur, only the first arriving photon (here 
the photon with the lowest number) is recorded and thus 
statistically favored. It is therefore important to decrease 
the detection probability, which can be achieved by an 
increasing b. Now the question arises, which probability 
function results for a constant source with n emitted pho- 
tons and b paths under the conditions of a monophoton 
experiment. 

Example. Four different photons N i have five paths. 
Then q -- 0.2 and the detection hierarchy is N1 > N2 

4 

> N3 >/74. For combining k of four photons 2 (~) = 
k = 0  

16 possibilities exist and all events with Na are counted 
for N1, all events with Nz but not Na are counted for Nz, 
and so on. The corrected probability qc of detecting a 
photon Ni is then 
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Fig. 1. Influence of statistical pulse pile-up on a constant source with 
start/stop ratios of 1% (a), 2% (b), 5% (c), 10% (d), 20% (e), and 
30% (f). For comparison, each data set is normalized to the first chan- 
nel (see text). 

qc(N,) = lq(1 - q)3 + 3qZ(1 _ q)2 (5) 
+ 3q3(1 - q) + lq 4 

qc(N2) = lq(1 - q)3 + 2q2(1 _ q)2 (6) 
+ lq3(1 - q) 

qc(N3) = lq(1 - q)3 + lq2(1 _ q)2 (7) 

qc(N4) = lq(1 - q)3 (8) 

where the factors follow again a binominal distribution. 
If, for example, two of the four photons are combined, 

(~) = 6 possibilities occur. The detection events are N1 

= 3, Nz = 2, N~ = 1, and N4 = 0. From Eqs. (5)- 
(8) the corrected probabilities q~(N1) = 0.2, qc(N2) = 
0.16, qc(N3) = 0.128, and q~(N4) = 0.1024 are derived, 
leading to a total count rate of 0.5904. 

For the general case with k of n photons, (~) com- 

binations are possible. The chance of detecting a special 
i.l - i  l~hoton Ni is (~_ i), where i > n - k + l .  The total 

detection probability distribution 2 q~(Ng) of a pile-up 
i = 1  

distorted data set with the channels i = 1 - n is then 
obtained from the true distribution q(N~) by the following 
equation: 

i = 1  i = 1  

Equation (9) can be solved quickly for a constant pulse 
(q(Ni) = q(Ni+l)) with a fast computer algorithm. The 
parameters q and b can in this case be calculated from 
p(0) -- (1 - q)" and from q = 1/b. Some results are 
presented in Fig. 1 for start/stop ratios from 1 to 30% 
with n = 250 photons ( -  channels in the MCA). When 
keeping in mind that only the relative probabilities are 
of importance, each data set can be normalized to the 
first channel for a better comparison. The influence of 
pulse pile-up is clearly visible and the resulting curves 
can be adequately fitted by a single-exponential function 
as predicted by Holzapfel [12]. 

Although a constant source can be interesting for 
testing the linearity of the detection electronics [23], the 
analysis of decaying curves is of course much more im- 
portant for scientific applications. In this case where q(Ni) 
4: q(Ni+O, Eq. (9) becomes time-consuming and can 
hardly be solved in an adequate time for high n. How- 
ever, the calculation can be truncated after taking into 
account events up to five photons and it was found that 
the approximation is nearly undistinguishable compared 
to the exact solution. Equation (9) has, furthermore, the 



26 Salthammer 

Table L Influence of Statistical Pulse Pile-Up on the Single-Exponential Fluorescence Decay 
of 9-Aminoacridine '~ 

Experimental data Numerical simulation 

Stop events Start/stop 'r Start/stop 'r 
TNC CPC (i/s) (%) (Ch) X 2 (%) (Ch) • 

328031 5084 280 0.84 52.70 1.10 1.00 52.48 0.98 
315536 5025 840 2.55 51.69 1.21 2.50 51.89 1.04 
319268 5158 2025 6.14 51.12 1.39 6.00 51.76 1.18 
318322 5073 3009 9.11 51.05 1.49 9.00 51.50 1.25 
324921 5292 4069 12.33 50.82 1.61 12.00 51.01 1.35 
321281 5299 5275 15.98 50.12 1.88 15.00 50.36 1.47 
313985 5245 6048 18.32 49.72 1.94 18.00 49.76 1.59 

'~ Comparison of experimental and simulated data. The probability function used in Eq. (9) was 
created by a convolution of a single-exponential decay (,r = 52.70 Ch) with an artificial lamp 
pulse (see Fig. 2) and normalization to 5.103 CPC. 
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Fig. 2. Simulation of a pile-up distorted fluorescence decay function 
with "r = 52.70 Ch and a start/stop ratio of 18%, fitted to a single- 
exponential function. The resulting lifetime was 'r = 49.76 Ch and X 2 
= 1.59. The synthetic excitation pulse was created with Eq. (2) and 
normalized to 5"103 C P C .  Parameters: a 1 = 104, C~ 2 = 5 0 0 ,  131 = 

0.36 Ch, 132 = 15 Ch, 13a = 10 Ch, bl = 20 Ch, bz = 35 Ch. 

advantage that arbitrary (especially convoluted) decay 
functions can be investigated under experimental con- 
ditions. This is now demonstrated for the truly single- 
exponential decay of 9AC in the solvent ethanol. 

9AC was chosen because it possesses a high fluo- 
rescence quantum yield and a long lifetime of ,r = 52.70 
Ch (15.5 ns). 3 The experiments were performed with 

3 The true lifetime ~(298 K) = 15.5 +_ 0.1 ns for a degassed sample 
of 9AC in the solvent ethanol was determined with a start/stop ratio 
of 0.2% (X 2 = 1,01). 

Table lI.  Influence of Statistical Pulse Pile-Up on a Simulated 
Double-Exponential Fluorescence Decay with the Model Parameters 

"ri = 75 Ch, "rE = 25 Ch, A/A2 = 1.00, and 1.104 CPC. 

Start/stop 'h "r2 
TNC (%) (Ch) (Ch) Ax/A 2 X z 

685568 1.00 74.83 24,95 0.984 1.00 
678281 2.50 74.53 24.60 0.981 1.03 
667917 6.00 74.20 24.52 0.938 1.09 
657356 9.00 74.24 24.48 0.900 0.98 
645448 12.00 74.60 24.56 0.824 0.97 
636921 15.00 74.04 24.12 0.809 1.06 
625983 18.00 73.36 23.76 0.785 1.04 

start/stop ratios between 1 and 18% with ~5-103 CPC 
and ~3"105 TNC (total number of counts); the results 
are presented in Table I. A typical single-exponential fit 
of a pile-up distorted decay is shown in Fig. 2. 

As expected, 'r decreases with increasing detection 
probability. For the simulations, the true decay function 
F(t) = A exp(- t /52.7 Ch) was convoluted with an ar- 
tificial pulse profile and the resulting function q(Ni) was 
normalized to 5"103 CPC. The pile-up distorted func- 
tions qc(Ni) were then calculated with Eq. (9) and it is 
evident from Table I that the results of simulation are in 
very good agreement with the experimental data. Anal- 
ogeous results were obtained from experiments with the 
fluorophore 1,6-diphenyl-l,3,5-hexatriene (DPH) in- 
stead of 9AC [24]. From the resulting lifetimes and X 2 
values, it can also be concluded that the commonly prac- 
ticed rule of thumb of 1% start/stop ratio is too hard in 
this case and that acceptable fits are obtained up to 3%. 
One should, however, keep in mind that this result can- 
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not be generalized, because the influence of pulse pile- 
up is strongly dependent on the time resolution and must 
always be determined for the specific decay. 

While the influence of pile-up on a single-exponen- 
tial function is evident from an increasing • a more 
complicated situation arises for a double-exponential de- 
cay. To demonstrate this, a simulation with the model 
parameters "1" 1 = 75 Ch, % = 25 Ch, an amplitude ratio 
A1/Aa = 1, and 104 CPC (see above for details) was 
performed. It can be seen from Table II, that an excellent 
X 2 is obtained in all cases and the pile-up distortion is 
not indicated by a bad fit. Only the kinetic parameters, 
in particular the amplitude ratio AJAz, which decreases 
drastically, are affected here. Hence, care has to be taken 
if multiexponential decays are investigated and it could 
be dangerous to tolerate a start/stop ratio of more than 
2% if no further correction methods are applied. 

For a standard TCSPC measurement, statistical pulse 
pile-up will surely not bring up any difficulties; more- 
over, if powerful excitation sources such as pulsed lasers 
with high repetition rates or storage ring radiation are 
used and the experiment is driven in the reversed mode. 
Difficulties can arise only if low-repetition flashlamps 
are used and high count numbers (106-107 ) are required. 
This was also pointed out by Birch and Imhof, who 
stated that the pile-up restriction should not cause a prob- 
lem in most cases. Nevertheless, they have indicated that 
higher detection rates can especially be helpful for the 
determination of rotational parameters from anisotropy 
measurements, where a great number of total counts is 
always required [25], and here it is helpful to check the 
tolerable start/stop ratio in advance. 
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